6. References

References

1

T.L. Amundrud, H. Malling, and R.G. Ingram. Geometrical constraints on the evolution of ridged sea ice. J. Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2003JC002251.

2

C. Konig Beatty and D.M. Holland. Modeling landfast ice by adding tensile strength. J. Phys. Oceanogr., 40:185–198, 2010. URL: http://dx.doi.org/10.1175/2009JPO4105.1.

3

C.M. Bitz and W.H. Lipscomb. An energy-conserving thermodynamic sea ice model for climate study. J. Geophys. Res. Oceans, 104(C7):15669–15677, 1999. URL: http://dx.doi.org/10.1029/1999JC900100.

4

S. Bouillon, T. Fichefet, V. Legat, and G. Madec. The elastic-viscous-plastic method revisited. Ocean Modelling, 71:1–12, 2013. URL: http://dx.doi.org/10.1016/j.ocemod.2013.05.013.

5

W.M. Connolley, J.M. Gregory, E.C. Hunke, and A.J. McLaren. On the consistent scaling of terms in the sea ice dynamics equation. J. Phys. Oceanogr., 34:1776–1780, 2004. URL: http://dx.doi.org/10.1175/1520-0485(2004)034<1776:OTCSOT>2.0.CO;2.

6

A. Craig, S. Mickelson, E.C. Hunke, and D. Bailey. Improved parallel performance of the CICE model in CESM1. Int. J High Perform. Comput. Appl, 29(2):154–165, 2014. URL: http://dx.doi.org/10.1177/1094342014548771.

7

J.K. Dukowicz and J.R. Baumgardner. Incremental remapping as a transport/advection algorithm. J. Comput. Phys., 160:318–335, 2000. URL: http://dx.doi.org/10.1006/jcph.2000.6465.

8

G.M. Flato and W.D. Hibler. Ridging and strength in modeling the thickness distribution of Arctic sea ice. J. Geophys. Res. Oceans, 100:18611–18626, 1995. URL: http://dx.doi.org/10.1029/95JC02091.

9

C.A. Geiger, W.D. Hibler, and S.F. Ackley. Large-scale sea ice drift and deformation: Comparison between models and observations in the western Weddell Sea during 1992. J. Geophys. Res. Oceans, 103:21893–21913, 1998. URL: http://dx.doi.org/10.1029/98JC01258.

10

Y. He and C.H.Q. Ding. Using Accurate Arithmetics to Improve Numerical Reproducibility and Stability in Parallel Applications. The Journal of Supercomputing, 18:259–277, 2001. URL: http://dx.doi.org/10.1023/A:1008153532043.

11

W.D. Hibler. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9:817–846, 1979. URL: http://dx.doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

12

W.D. Hibler. Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108:1943–1973, 1980. URL: http://dx.doi.org/10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2.

13

W.D. Hibler and K. Bryan. A diagnostic ice-ocean model. J. Phys. Oceanogr., 17:987–1015, 1987. URL: http://dx.doi.org/10.1175/1520-0485(1987)017<0987:ADIM>2.0.CO;2.

14

W.D. Hibler, A. Roberts, P. Heil, A.Y. Proshutinsky, H.L. Simmons, and J. Lovick. Modeling M2 tidal variability in Arctic sea-ice drift and deformation. Ann. Glaciol., 2006. URL: http://dx.doi.org/10.3189/172756406781811178.

15

C. Horvat and E. Tziperman. A prognostic model of the sea-ice floe size and thickness distribution. The Cryosphere, 9(6):2119–2134, 2015. URL: http://dx.doi.org/10.5194/tc-9-2119-2015.

16

E.C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. J. Comp. Phys., 170:18–38, 2001. URL: http://dx.doi.org/10.1006/jcph.2001.6710.

17

E.C. Hunke and J.K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27:1849–1867, 1997. URL: http://dx.doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

18

E.C. Hunke and J.K. Dukowicz. The Elastic-Viscous-Plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere—Effect of metric terms. Mon. Wea. Rev., 130:1848–1865, 2002. URL: http://dx.doi.org/10.1175/1520-0493(2002)130<1848:TEVPSI>2.0.CO;2.

19

E.C. Hunke and J.K. Dukowicz. The sea ice momentum equation in the free drift regime. Technical Report LA-UR-03-2219, Los Alamos National Laboratory, 2003. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/LAUR-03-2219.pdf.

20

E.C. Hunke, A. Roberts, R. Allard, J.F. Lemieux, M. Turner, A.P. Craig, A.K. DuVivier, D. Bailey, M.M. Holland, M. Winton, F. Dupont, and R. Grumbine. The CICE Consortium Sea Ice Modeling Suite. In Prep., 2018. URL: http://dx.doi.org/IN-PROGRESS.

21

E.C. Hunke and Y. Zhang. A comparison of sea ice dynamics models at high resolution. Mon. Wea. Rev., 127:396–408, 1999. URL: http://dx.doi.org/10.1175/1520-0493(1999)127<0396:ACOSID>2.0.CO;2.

22

M. Jin, C. Deal, J. Wang, K.H. Shin, N. Tanaka, T.E. Whiteledge, S.H. Lee, and R.R. Gradinger. Controls of the landfast ice-ocean ecosystem offshore Barrow, Alaska. Ann. Glaciol., 44:63–72, 2006. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/JDWSTWLG06.pdf.

23

B.G. Kauffman and W.G. Large. The CCSM coupler, version 5.0.1. 2002. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/KL_NCAR2002.pdf.

24

M. Kimmritz, S. Danilov, and M. Losch. On the convergence of the modified elastic-viscous-plastic method for solving the sea ice momentum equation. J. Comp. Phys., 296:90–100, 2015. URL: http://dx.doi.org/10.1016/j.jcp.2015.04.051.

25

W.G. Large and S.G. Yeager. The global climatology of an interannually varying air-sea flux data set. Ocean Modelling, 2009. URL: http://dx.doi.org/10.1007/s00382-008-0441-3.

26

J.F. Lemieux, F. Dupont, P. Blain, F. Roy, G.C. Smith, and G.M. Flato. Improving the simulation of landfast ice by combining tensile strength and a parameterization for grounded ridges. J. Geophys. Res. Oceans, 121:7354–7368, 2016. URL: http://dx.doi.org/10.1002/2016JC012006.

27

J.F. Lemieux, D.A. Knoll, B. Tremblay, D.M. Holland, and M. Losch. A comparison of the Jacobian-free Newton Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formulation: a serial algorithm study. J. Comp. Phys., 231:5926–5944, 2012. URL: http://dx.doi.org/10.1016/j.jcp.2012.05.024.

28

M. Leppäranta, A. Oikkonen, K. Shirasawa, and Y. Fukamachi. A treatise on frequency spectrum of drift ice velocity. Cold Reg. Sci. Technol., 76-77:83–91, 2012. doi:http://dx.doi.org/10.1016/j.coldregions.2011.12.005.

29

W.H. Lipscomb. Remapping the thickness distribution in sea ice models. J. Geophys. Res. Oceans, 106:13989–14000, 2001. URL: http://dx.doi.org/10.1029/2000JC000518.

30

W.H. Lipscomb and E.C. Hunke. Modeling sea ice transport using incremental remapping. Mon. Wea. Rev., 132:1341–1354, 2004. URL: http://dx.doi.org/10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2.

31

W.H. Lipscomb, E.C. Hunke, W. Maslowski, and J. Jakacki. Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2005JC003355.

32

G.A. Maykut and N. Untersteiner. Some results from a time dependent thermodynamic model of sea ice. J. Geophys. Res., 76:1550–1575, 1971. URL: http://dx.doi.org/10.1029/JC076i006p01550.

33

A.A. Mirin and P.H. Worley. Improving the Performance Scalability of the Community Atmosphere Model. Int. J High Perform. Comput. Appl, 26(1):17–30, 2012. URL: http://dx.doi.org/10.1177/1094342011412630.

34

R.J. Murray. Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126:251–273, 1996. URL: http://dx.doi.org/10.1006/jcph.1996.0136.

35

D. Notz, A. Jahn, E. Hunke, F. Massonnet, J. Stroeve, B. Tremblay, and M. Vancoppenolle. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations. Geosci. Model Dev., 9:3427–3446, 2016. URL: http://dx.doi.org/10.5194/gmd-9-3427-2016.

36

C.L. Parkinson and W.M. Washington. A large-scale numerical model of sea ice. J. Geophys. Res. Oceans, 84(C1):331–337, 1979. URL: http://dx.doi.org/10.1029/JC084iC01p00311.

37

D.J. Pringle, H. Eicken, H.J. Trodahl, and L.G.E. Backstrom. Thermal conductivity of landfast Antarctic and Arctic sea ice. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2006JC003641.

38

L. A. Roach, C. Horvat, S. M. Dean, and C. M. Bitz. An emergent sea ice floe size distribution in a global coupled ocean-sea ice model. J. Geophys. Res. Oceans, 123(6):4322–4337, 2018. URL: http://dx.doi.org/10.1029/2017JC013692.

39

A. Roberts, E.C. Hunke, R. Allard, D.A. Bailey, A.P. Craig, J. Lemieux, and M.D. Turner. Quality control for community-based sea-ice model development. Philos. Trans. Royal Soc. A, 2018. URL: http://dx.doi.org/10.1098/rsta.2017.0344.

40

A.F. Roberts, A.P. Craig, W. Maslowski, R. Osinski, A.K. DuVivier, M. Hughes, B. Nijssen, J.J. Cassano, and M. Brunke. Simulating transient ice-ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model. Ann. Glaciol., 56(69):211–228, 2015. URL: http://dx.doi.org/10.3189/2015AoG69A760.

41

A. Rosati and K. Miyakoda. A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 18:1601–1626, 1988. URL: http://dx.doi.org/10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2.

42

D.A. Rothrock. The energetics of plastic deformation of pack ice by ridging. J. Geophys. Res., 80:4514–4519, 1975. URL: http://dx.doi.org/10.1029/JC080i033p04514.

43

E.M. Schulson. Brittle failure of ice. Eng. Fract. Mech., 68:1839–1887, 2001. URL: http://dx.doi.org/10.1016/S0013-7944(01)00037-6.

44

R.D. Smith, S. Kortas, and B. Meltz. Curvilinear coordinates for global ocean models. Technical Report LA-UR-95-1146, Los Alamos National Laboratory, 1995. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/LAUR-95-1146.pdf.

45

A.H. Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall, 1971. Englewood Cliffs, New Jersey.

46

K.E. Taylor. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106(D7):7183–7192, 2001. URL: http://dx.doi.org/10.1029/2000JD900719.

47

A.S. Thorndike, D.A. Rothrock, G.A. Maykut, and R. Colony. The thickness distribution of sea ice. J. Geophys. Res., 80:4501–4513, 1975. URL: http://dx.doi.org/10.1029/JC080i033p04501.

48

M. Tsamados, D.L. Feltham, and A.V. Wilchinsky. Impact of a new anisotropic rheology on simulations of Arctic sea ice. J. Geophys. Res. Oceans, 118:91–107, 2013. URL: http://dx.doi.org/10.1029/2012JC007990.

49

H. Tsujino, S. Urakawa, R.J. Small, W.M. Kim, S.G. Yeager, and et al. JRA‐55 based surface dataset for driving ocean–sea‐ice models (JRA55‐do). Ocean Modelling, 130:79–139, 2018. URL: http://dx.doi.org/10.1016/j.ocemod.2018.07.002.

50

H. von Storch and F.W. Zwiers. Statistical Analysis in Climate Research. Cambridge University Press, 1999. Cambridge, UK.

51

J. Weiss and E.M. Schulson. Coulombic faulting from the grain scale to the geophysical scale: lessons from ice. J. of Phys. D: Appl. Phys., 42:214017, 2009. URL: http://dx.doi.org/10.1088/0022-3727/42/21/214017.

52

A.V. Wilchinsky and D.L. Feltham. Dependence of sea ice yield-curve shape on ice thickness. J. Phys. Oceanogr., 34:2852–2856, 2004. URL: http://dx.doi.org/10.1175/JPO2667.1.

53

A.V. Wilchinsky and D.L. Feltham. Modelling the rheology of sea ice as a collection of diamond-shaped floes. J. Non-Newtonian Fluid Mech., 138:22–32, 2006. URL: http://dx.doi.org/10.1016/j.jnnfm.2006.05.001.

54

D.S. Wilks. Statistical methods in the atmospheric sciences. Academic Press, 2006. 2nd ed.

55

S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comp. Phys., 31(3):335–362, 1979. URL: http://dx.doi.org/10.1016/0021-9991(79)90051-2.

56

F.W. Zwiers and H. von Storch. Taking serial correlation into account in tests of the mean. J. Climate, 8(2):336–351, 1995. URL: http://dx.doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.