5. References

References

[1]T.L. Amundrud, H. Malling, and R.G. Ingram. Geometrical constraints on the evolution of ridged sea ice. J. Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2003JC002251.
[2]K.C. Armour, C.M. Bitz, L. Thompson, and E.C. Hunke. Controls on Arctic sea ice from first-year and multi-year ice survivability. J. Climate, 24:2378–2390, 2011. URL: http://dx.doi.org/10.1175/2010JCLI3823.1.
[3]K.R. Arrigo, J.N. Kremer, and C.W. Sullivan. A simulated Antarctic fast ice ecosystem. J. Geophys. Res. Oceans, 98:6929–6946, 1993. URL: http://dx.doi.org/10.1029/93JC00141.
[4]S.P.S. Arya. A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J. Geophys. Res., 80:3447–3454, 1975. URL: http://dx.doi.org/10.1029/JC080i024p03447.
[5]A. Assur. Composition of sea ice and its tensile strength. In Arctic sea ice; conference held at Easton, Maryland, February 24–27, 1958, volume 598, pages 106–138. Publs. Natl. Res. Coun. Wash., Washington, D.C., 1958.
[6]C.M. Bitz, M.M. Holland, M. Eby, and A.J. Weaver. Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res. Oceans, 106:2441–2463, 2001. URL: http://dx.doi.org/10.1029/1999JC000113.
[7]C.M. Bitz and W.H. Lipscomb. An energy-conserving thermodynamic sea ice model for climate study. J. Geophys. Res. Oceans, 104(C7):15669–15677, 1999. URL: http://dx.doi.org/10.1029/1999JC900100.
[8]S. Bouillon, T. Fichefet, V. Legat, and G. Madec. The elastic-viscous-plastic method revisited. Ocean Modelling, 71:1–12, 2013. URL: http://dx.doi.org/10.1016/j.ocemod.2013.05.013.
[9]B.P. Briegleb and B. Light. A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. NCAR Technical Note NCAR/TN-472+STR, National Center for Atmospheric Research, 2007. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/BL_NCAR2007.pdf.
[10]W.M. Connolley, J.M. Gregory, E.C. Hunke, and A.J. McLaren. On the consistent scaling of terms in the sea ice dynamics equation. J. Phys. Oceanogr., 34:1776–1780, 2004. URL: http://dx.doi.org/10.1175/1520-0485(2004)034<1776:OTCSOT>2.0.CO;2.
[11]C. Deal, M. Jin, S. Elliott, E. Hunke, M. Maltrud, and N. Jeffery. Large scale modeling of primary production and ice algal biomass within Arctic sea ice in 1992. J. Geophys. Res. Oceans, 2011. URL: http://dx.doi.org/10.1029/2010JC006409.
[12]J.K. Dukowicz and J.R. Baumgardner. Incremental remapping as a transport/advection algorithm. J. Comput. Phys., 160:318–335, 2000. URL: http://dx.doi.org/10.1006/jcph.2000.6465.
[13]J.K. Dukowicz, R.D. Smith, and R.C. Malone. A reformulation and implementation of the Bryan-Cox-Semtner ocean model on the connection machine. J. Atmos. Oceanic Technol., 10(1):195–208, 1993. URL: https://doi.org/10.1175/1520-0426(1993)010<0195:ARAIOT>2.0.CO;2.
[14]J.K. Dukowicz, R.D. Smith, and R.C. Malone. Implicit free-surface method for the Bryan-Cox-Semtner ocean model. J. Geophys. Res. Oceans, 99(C4):7991–8014, 1994. URL: http://dx.doi.org/10.1029/93JC03455.
[15]E.E. Ebert, J.L. Schramm, and J.A. Curry. Disposition of solar radiation in sea ice and the upper ocean. J. Geophys. Res. Oceans, 100:15965–15975, 1995. URL: http://dx.doi.org/10.1029/95JC01672.
[16]H. Eicken, T.C. Grenfell, D.K. Perovich, J.A Richter-Menge, and K. Frey. Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2003JC001989.
[17]S. Elliott, C. Deal, G. Humphries, E. Hunke, N. Jeffery, M. Jin, M. Levasseur, and J. Stefels. Pan-Arctic simulation of coupled nutrient-sulfur cycling due to sea ice biology: Preliminary results. J. Geophys. Res. Biogeo., 2011. URL: http://dx.doi.org/10.1029/2011JG001649.
[18]D.L. Feltham, N. Untersteiner, J.S. Wettlaufer, and M.G. Worster. Sea ice is a mushy layer. Geophys. Res. Lett., 2006. URL: http://dx.doi.org/10.1029/2006GL026290.
[19]G.M. Flato and W.D. Hibler. Ridging and strength in modeling the thickness distribution of Arctic sea ice. J. Geophys. Res. Oceans, 100:18611–18626, 1995. URL: http://dx.doi.org/10.1029/95JC02091.
[20]D. Flocco and D.L. Feltham. A continuum model of melt pond evolution on Arctic sea ice. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2006JC003836.
[21]D. Flocco, D.L. Feltham, and A.K. Turner. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. Oceans, 2010. URL: http://dx.doi.org/10.1029/2009JC005568.
[22]D. Flocco, D. Schroeder, D.L. Feltham, and E.C. Hunke. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J. Geophys. Res. Oceans, 2012. URL: http://dx.doi.org/10.1029/2012JC008195.
[23]H.E. Garcia, R.A. Locarnini, T.P. Boyer, and J.I. Antonov. Nutrients (phosphate, nitrate, silicate). In World Ocean Atlas 2005, volume 4. NOAA Atlas NESDIS 64, NOAA, 2006.
[24]C.A. Geiger, W.D. Hibler, and S.F. Ackley. Large-scale sea ice drift and deformation: Comparison between models and observations in the western Weddell Sea during 1992. J. Geophys. Res. Oceans, 103:21893–21913, 1998. URL: http://dx.doi.org/10.1029/98JC01258.
[25]K.M. Golden, H. Eicken, A.L. Heaton, J. Miner, D.J. Pringle, and J. Zhu. Thermal evolution of permeability and microstructure in sea ice. Geophys. Res. Lett., 2007. URL: http://dx.doi.org/10.1029/2007GL030447.
[26]W.D. Hibler. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9:817–846, 1979. URL: http://dx.doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.
[27]W.D. Hibler. Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108:1943–1973, 1980. URL: http://dx.doi.org/10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2.
[28]W.D. Hibler and K. Bryan. A diagnostic ice-ocean model. J. Phys. Oceanogr., 17:987–1015, 1987. URL: http://dx.doi.org/10.1175/1520-0485(1987)017<0987:ADIM>2.0.CO;2.
[29]W.D. Hibler, A. Roberts, P. Heil, A.Y. Proshutinsky, H.L. Simmons, and J. Lovick. Modeling M2 tidal variability in Arctic sea-ice drift and deformation. Ann. Glaciol., 2006. doi:10.3189/172756406781811178.
[30]M.M. Holland, D.A. Bailey, B.P. Briegleb, B. Light, and E. Hunke. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25:1413–1430, 2012. URL: http://dx.doi.org/10.1175/JCLI-D-11-00078.1.
[31]E.C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. J. Comp. Phys., 170:18–38, 2001. URL: http://dx.doi.org/10.1006/jcph.2001.6710.
[32]E.C. Hunke and C.M. Bitz. Age characteristics in a multidecadal Arctic sea ice simulation. J. Geophys. Res. Oceans, 2009. URL: http://dx.doi.org/10.1029/2008JC005186.
[33]E.C. Hunke and J.K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27:1849–1867, 1997. URL: http://dx.doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.
[34]E.C. Hunke and J.K. Dukowicz. The Elastic-Viscous-Plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere—Effect of metric terms. Mon. Wea. Rev., 130:1848–1865, 2002. URL: http://dx.doi.org/10.1175/1520-0493(2002)130<1848:TEVPSI>2.0.CO;2.
[35]E.C. Hunke and J.K. Dukowicz. The sea ice momentum equation in the free drift regime. Technical Report LA-UR-03-2219, Los Alamos National Laboratory, 2003. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/LAUR-03-2219.pdf.
[36]E.C. Hunke, D.A. Hebert, and O. Lecomte. Level-ice melt ponds in the Los Alamos Sea Ice Model, CICE. Ocean Modelling, 71:26–42, 2013. URL: http://dx.doi.org/10.1016/j.ocemod.2012.11.008.
[37]E.C. Hunke and Y. Zhang. A comparison of sea ice dynamics models at high resolution. Mon. Wea. Rev., 127:396–408, 1999. URL: http://dx.doi.org/10.1175/1520-0493(1999)127<0396:ACOSID>2.0.CO;2.
[38]Elizabeth Hunke, Andrew Roberts, Richard Allard, Jean-François Lemieux, Matthew Turner, Tony Craig, Alice DuVivier, David Bailey, Marika Holland, Michael Winton, Frederic Dupont, and Robert Grumbine. The CICE Consortium Sea Ice Modeling Suite. In Prep.
[39]M. Jin, C. Deal, J. Wang, K.H. Shin, N. Tanaka, T.E. Whiteledge, S.H. Lee, and R.R. Gradinger. Controls of the landfast ice-ocean ecosystem offshore Barrow, Alaska. Ann. Glaciol., 44:63–72, 2006. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/JDWSTWLG06.pdf.
[40]R.E. Jordan, E.L. Andreas, and A.P. Makshtas. Heat budget of snow-covered sea ice at North Pole 4. J. Geophys. Res. Oceans, 104(C4):7785–7806, 1999. URL: http://dx.doi.org/10.1029/1999JC900011.
[41]B.G. Kauffman and W.G. Large. The CCSM coupler, version 5.0.1. NCAR Tech. Note, 2002. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/KL_NCAR2002.pdf.
[42]D. Lavoie, K. Denman, and C. Michel. Modeling ice algal growth and decline in a seasonally ice- covered region of the Arctic (Resolute Passage, Canadian Archipelago). J. Geophys. Res. Oceans, 2005. URL: http://dx.doi.org/10.1029/2005JC002922.
[43]Matti Leppäranta, Annu Oikkonen, Kunio Shirasawa, and Yasushi Fukamachi. A treatise on frequency spectrum of drift ice velocity. Cold Reg. Sci. Technol., 76-77:83–91, jun 2012. doi:10.1016/j.coldregions.2011.12.005.
[44]W.H. Lipscomb. Modeling the Thickness Distribution of Arctic Sea Ice. Dept. of Atmospheric Sciences University of Washington, Seattle, 1998. PhD thesis. URL: http://hdl.handle.net/1773/10081.
[45]W.H. Lipscomb. Remapping the thickness distribution in sea ice models. J. Geophys. Res. Oceans, 106:13989–14000, 2001. URL: http://dx.doi.org/10.1029/2000JC000518.
[46]W.H. Lipscomb and E.C. Hunke. Modeling sea ice transport using incremental remapping. Mon. Wea. Rev., 132:1341–1354, 2004. URL: http://dx.doi.org/10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2.
[47]W.H. Lipscomb, E.C. Hunke, W. Maslowski, and J. Jakacki. Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2005JC003355.
[48]P. Lu, Z. Li, B. Cheng, and M. Lepparanta. A parametrization fo the ice-ocean drag coefficient. J. Geophys. Res. Oceans, 2011. URL: http://dx.doi.org/10.1029/2010JC006878.
[49]C. Lüpkes, V.M. Gryanik, J. Hartmann, and E.L. Andreas. A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J. Geophys. Res. Atmos., 2012. URL: http://dx.doi.org/10.1029/2012JD017630.
[50]G.A. Maykut. Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res. Oceans, 87:7971–7984, 1982. URL: http://dx.doi.org/10.1029/JC087iC10p07971.
[51]G.A. Maykut and M.G. McPhee. Solar heating of the Arctic mixed layer. J. Geophys. Res. Oceans, 100:24691–24703, 1995. URL: http://dx.doi.org/10.1029/95JC02554.
[52]G.A. Maykut and D.K. Perovich. The role of shortwave radiation in the summer decay of a sea ice cover. J. Geophys. Res. Oceans, 92:7032–7044, 1987. URL: http://dx.doi.org/10.1029/JC092iC07p07032.
[53]G.A. Maykut and N. Untersteiner. Some results from a time dependent thermodynamic model of sea ice. J. Geophys. Res., 76:1550–1575, 1971. URL: http://dx.doi.org/10.1029/JC076i006p01550.
[54]R.J. Murray. Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126:251–273, 1996. URL: http://dx.doi.org/10.1006/jcph.1996.0136.
[55]D. Notz. Thermodynamic and Fluid-Dynamical Processes in Sea Ice. University of Cambridge, UK, 2005. PhD thesis. URL: http://ulmss-newton.lib.cam.ac.uk/vwebv/holdingsInfo?bibId=27224.
[56]N. Ono. Specific heat and heat of fusion of sea ice. In H. Oura, editor, Physics of Snow and Ice, volume I, pages 599–610. Institute of Low Temperature Science, Hokkaido, Japan, 1967.
[57]C.L. Parkinson and W.M. Washington. A large-scale numerical model of sea ice. J. Geophys. Res. Oceans, 84(C1):331–337, 1979. URL: http://dx.doi.org/10.1029/JC084iC01p00311.
[58]D.J. Pringle, H. Eicken, H.J. Trodahl, and L.G.E. Backstrom. Thermal conductivity of landfast Antarctic and Arctic sea ice. J. Geophys. Res. Oceans, 2007. URL: http://dx.doi.org/10.1029/2006JC003641.
[59]Andrew F. Roberts, Anthony Craig, Wieslaw Maslowski, Robert Osinski, Alice Duvivier, Mimi Hughes, Bart Nijssen, John J. Cassano, and Michael Brunke. Simulating transient ice – ocean Ekman transport in the Regional Arctic System Model and Community Earth System Model. Ann. Glaciol., 56(69):211–228, 2015. doi:10.3189/2015AoG69A760.
[60]A. Rosati and K. Miyakoda. A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 18:1601–1626, 1988. URL: https://doi.org/10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2.
[61]D.A. Rothrock. The energetics of plastic deformation of pack ice by ridging. J. Geophys. Res., 80:4514–4519, 1975. URL: http://dx.doi.org/10.1029/JC080i033p04514.
[62]E.M. Schulson. Brittle failure of ice. Eng. Fract. Mech., 68:1839–1887, 2001. URL: http://dx.doi.org/10.1016/S0013-7944(01)00037-6.
[63]W. Schwarzacher. Pack ice studies in the Arctic Ocean. J. Geophys. Res., 64:2357–2367, 1959. URL: http://dx.doi.org/10.1029/JZ064i012p02357.
[64]A.J. Semtner. A Model for the Thermodynamic Growth of Sea Ice in Numerical Investigations of Climate. J. Phys. Oceanogr., 6:379–389, 1976. URL: http://dx.doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.
[65]G. Siedler and H. Peters. Physical properties (general) of sea water. In Landolt-Börnstein: Numerical data and functional relationships in science and technology, New Series V/3a, pages 233–264. Springer, 1986.
[66]R.D. Smith, J.K. Dukowicz, and R.C. Malone. Parallel ocean general circulation modeling. Physica D, 60(1):38–61, 1992. URL: https://doi.org/10.1016/0167-2789(92)90225-C.
[67]R.D. Smith, S. Kortas, and B. Meltz. Curvilinear coordinates for global ocean models. Technical Report LA-UR-95-1146, Los Alamos National Laboratory, 1995. URL: https://github.com/CICE-Consortium/CICE/blob/master/doc/PDF/LAUR-95-1146.pdf.
[68]M. Steele. Sea ice melting and floe geometry in a simple ice-ocean model. J. Geophys. Res. Oceans, 97:17729–17738, 1992. URL: http://dx.doi.org/10.1029/92JC01755.
[69]M. Steele, J. Zhang, D. Rothrock, and H. Stern. The force balance of sea ice in a numerical model of the Arctic Ocean. J. Geophys. Res. Oceans, 102(C9):21061–21079, 1997. URL: http://dx.doi.org/10.1029/97JC01454.
[70]J. Stefels, M. Steinke, S. Turner, G. Malin, and S. Belviso. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry, 83:245–275, 2007. URL: http://dx.doi.org/10.1007/978-1-4020-6214-8_18.
[71]A.H. Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall, 1971. Englewood Cliffs, New Jersey.
[72]Karl E Taylor. Summarizing multiple aspects of model performance. J. Geophys. Res., 106(D7):7183–7192, 2001.
[73]P.D. Taylor and D.L. Feltham. A model of melt pond evolution on sea ice. J. Geophys. Res. Oceans, 2004. URL: http://dx.doi.org/10.1029/2004JC002361.
[74]A.S. Thorndike, D.A. Rothrock, G.A. Maykut, and R. Colony. The thickness distribution of sea ice. J. Geophys. Res., 80:4501–4513, 1975. URL: http://dx.doi.org/10.1029/JC080i033p04501.
[75]H.J. Trodahl, S.O.F. Wilkinson, M.J. McGuinness, and T.G. Haskeel. Thermal conductivity of sea ice: dependence on temperature and depth. Geophys. Res. Lett., 28:1279–1282, 2001. URL: http://dx.doi.org/10.1029/2000GL012088.
[76]M. Tsamados, D.L. Feltham, D. Schroeder, D. Flocco, S.L. Farrell, N.T. Kurtz, S.W. Laxon, and S. Bacon. Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J. Phys. Oceanogr., 44:1329–1353, 1999. URL: https://doi.org/10.1175/JPO-D-13-0215.1.
[77]M. Tsamados, D.L. Feltham, and A.V. Wilchinsky. Impact of a new anisotropic rheology on simulations of Arctic sea ice. J. Geophys. Res. Oceans, 118:91–107, 2013. URL: http://dx.doi.org/10.1029/2012JC007990.
[78]A.K. Turner, E.C. Hunke, and C.M. Bitz. Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling. J. Geophys. Res. Oceans, 118:2279–2294, 2013. URL: http://dx.doi.org/10.1002/jgrc.20171.
[79]N. Untersteiner. Calculations of temperature regime and heat budget of sea ice in the Central Arctic. J. Geophys. Res., 69:4755–4766, 1964. URL: http://dx.doi.org/10.1029/JZ069i022p04755.
[80]Hans von Storch and Francis W Zwiers. Statistical Analysis in Climate Research. Cambridge University Press, 1999.
[81]J. Weiss and E.M. Schulson. Coulombic faulting from the grain scale to the geophysical scale: lessons from ice. J. of Phys. D: Appl. Phys., 42:214017, 2009. URL: http://stacks.iop.org/0022-3727/42/i=21/a=214017.
[82]A.V. Wilchinsky and D.L. Feltham. Dependence of sea ice yield-curve shape on ice thickness. J. Phys. Oceanogr., 34:2852–2856, 2004. URL: http://dx.doi.org/10.1175/JPO2667.1.
[83]A.V. Wilchinsky and D.L. Feltham. Modelling the rheology of sea ice as a collection of diamond-shaped floes. J. Non-Newtonian Fluid Mech., 138:22–32, 2006. URL: http://dx.doi.org/10.1016/j.jnnfm.2006.05.001.
[84]Daniel S Wilks. Statistical methods in the atmospheric sciences. Academic Press, 2nd edition, 2006.
[85]Francis W. Zwiers and Hans von Storch. Taking serial correlation into account in tests of the mean. J. Clim., 8(2):336–351, 1995. doi:10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.